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Smartphones enjoy high adoption rates around the globe. Rarely
more than an arm’s length away, these sensor-rich devices can
easily be repurposed to collect rich and extensive records of
their users’ behaviors (e.g., location, communication, media con-
sumption), posing serious threats to individual privacy. Here we
examine the extent to which individuals’ Big Five personality
dimensions can be predicted on the basis of six different classes
of behavioral information collected via sensor and log data har-
vested from smartphones. Taking a machine-learning approach,
we predict personality at broad domain (rmedian = 0.37) and nar-
row facet levels (rmedian = 0.40) based on behavioral data collected
from 624 volunteers over 30 consecutive days (25,347,089 logging
events). Our cross-validated results reveal that specific patterns in
behaviors in the domains of 1) communication and social behav-
ior, 2) music consumption, 3) app usage, 4) mobility, 5) overall
phone activity, and 6) day- and night-time activity are distinc-
tively predictive of the Big Five personality traits. The accuracy
of these predictions is similar to that found for predictions based
on digital footprints from social media platforms and demon-
strates the possibility of obtaining information about individuals’
private traits from behavioral patterns passively collected from
their smartphones. Overall, our results point to both the bene-
fits (e.g., in research settings) and dangers (e.g., privacy impli-
cations, psychological targeting) presented by the widespread
collection and modeling of behavioral data obtained from
smartphones.
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I t has been well documented that “digital footprints” derived
from social network platforms (e.g., Facebook likes) can reveal

individuals’ psychological characteristics, such as their person-
ality traits (1). This is consequential because the Big Five per-
sonality traits have been shown to predict a broad range of
life outcomes in the domains of health, political participation,
personal and romantic relationships, purchasing behaviors, and
academic and job performance (2–4). Data-driven inferences
about individuals’ personality traits present great opportunities
for research; but they also have major implications for individual
privacy because they allow for personality-based targeting and
manipulation (5, 6).

Even greater threats to privacy are posed by smartphones,
which can collect a far broader, fine-grained array of daily
behaviors than can be scraped from social media platforms and
which are pervasive in most societies around the globe (7). The
on-board sensors of a smartphone and the device’s logging capa-
bilities (e.g., app-usage logs, media and website consumption,
location, communications, screen activity) can be harnessed by
apps to record daily behaviors performed both on the devices
themselves and in close proximity to them (8–10). These data

have great potential for psychological research and have already
begun to yield valuable findings, including studies relating phys-
ical activity and communication data to human emotion and
mental wellbeing (11–14). However, behavioral data from smart-
phones can contain private information and should therefore be
collected and processed only when informed consent is given
(15). In theory, users must give permission for apps to access
certain types of data on their phones (e.g., to record location
or audio data). However, people are often unaware of the data
they are providing, are tricked into giving access to more data
(16), and struggle to understand current permission systems that
are unspecific and ineffective in preventing the collection of per-
sonal data from smartphones (17–19). Finally, many apps find
creative side channels to routinely extract data from people’s
phones (20, 21)—regardless of whether permission has been
provided.

Here we evaluate whether individuals’ Big Five personality
trait levels can be predicted on the basis of six different classes of

Significance

Smartphones are sensor-rich computers that can easily be
used to collect extensive records of behaviors, posing seri-
ous threats to individuals’ privacy. This study examines the
extent to which individuals’ personality dimensions (assessed
at broad domain and narrow facet levels) can be predicted
from six classes of behavior: 1) communication and social
behavior, 2) music consumption, 3) app usage, 4) mobility, 5)
overall phone activity, and 6) day- and night-time activity, in
a large sample. The cross-validated results show which Big
Five personality dimensions are predictable and which spe-
cific patterns of behavior are indicative of which dimensions,
revealing communication and social behavior as most predic-
tive overall. Our results highlight the benefits and dangers
posed by the widespread collection of smartphone data.

Author contributions: C.S. designed research; C.S., R.S., S.T.V., T.S., M.O., and T.U. per-
formed research; C.S., Q.A., D.B., S.T.V., T.S., T.U., H.H., B.B., and M.B. contributed new
reagents/analytic tools; C.S., Q.A., M.O., and T.U. analyzed data; C.S., Q.A., S.D.G., and
G.M.H. wrote the paper; C.S., R.S., S.D.G., G.M.H., D.B., S.T.V., T.S., H.H., B.B., and M.B.
improved manuscript; and H.H., B.B., and M.B. provided resources.y

The authors declare no competing interest.y

This article is a PNAS Direct Submission.y

This open access article is distributed under Creative Commons Attribution-NonCommercial-
NoDerivatives License 4.0 (CC BY-NC-ND).y

Data deposition: Data and code for this paper have been deposited in the Open Science
Framework: https://osf.io/kqjhr/.y
1 To whom correspondence may be addressed. Email: stachl@stanford.edu.y

This article contains supporting information online at https://www.pnas.org/lookup/suppl/
doi:10.1073/pnas.1920484117/-/DCSupplemental.y

First published July 14, 2020.

17680–17687 | PNAS | July 28, 2020 | vol. 117 | no. 30 www.pnas.org/cgi/doi/10.1073/pnas.1920484117

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 D
ec

em
be

r 
12

, 2
02

1 

http://orcid.org/0000-0002-4498-3067
http://orcid.org/0000-0002-5252-8902
http://orcid.org/0000-0001-8970-591X
http://orcid.org/0000-0002-0013-715X
http://orcid.org/0000-0003-3720-7120
http://orcid.org/0000-0003-1215-8561
http://orcid.org/0000-0001-6002-6980
http://orcid.org/0000-0002-0597-8708
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://osf.io/kqjhr/
mailto:stachl@stanford.edu
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1920484117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1920484117/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.1920484117
http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.1920484117&domain=pdf


www.manaraa.com

PS
YC

H
O

LO
G

IC
A

L
A

N
D

CO
G

N
IT

IV
E

SC
IE

N
CE

S

behavioral information collected via smartphones. Moreover, we
examine which behaviors reveal most about each personality trait
and how predictive each behavioral class is on average. Using
sensor and log data from volunteers’ smartphones, we extracted
thousands of variables, categorized into six classes of daily behav-
ior derived from previous research: 1) app usage (e.g., mean
duration of gaming app usage), 2) music consumption (e.g., mean
valence of played songs), 3) communication and social behavior
(e.g., number of outgoing calls per day), 4) mobility behaviors
(e.g., mean radius of gyration), 5) overall phone activity (e.g.,
number of unlock events per day), and 6) a higher-level behav-
ioral class that captured the extent of daytime versus nighttime
activity (e.g., outgoing calls at night). Together these six classes
of behavior provided a broad sampling of the data that can eas-
ily be derived from smartphones and which may provide clues to
individuals’ personalities and allow for a robust investigation of
our research question.

We assessed personality in terms of the Big Five dimen-
sions, the most widely used and well-established system in
psychological science for organizing personality traits (22–24).
This taxonomy describes human personality in terms of five
broad and relatively stable dimensions: openness, conscien-
tiousness, extraversion, agreeableness, and emotional stability
(22, 23), with each dimension subsuming a larger number of
more specific facets. The Big Five have been found to have
a strong genetic basis and to replicate across cultures and
contexts (25–27).

Past studies have highlighted the promise of using smart-
phones to associate behavioral data with personality traits and
other private attributes (28–39). A subset of these studies has
used machine learning in analyses with the goal of predict-
ing personality traits from behavioral measures (28–30, 38, 39).
However, this subset of studies was subject to a number of key
limitations, including the following: 1) focusing on just a single
class of behavior or a small number of similar behaviors (e.g.,
communication behavior, refs. 31 and 39); 2) using small sam-
ples (28–30, 39); 3) being confined to the broad personality trait
domains, not their more specific facets (28–30, 38, 39); 4) using
classification instead of regression for the prediction of continu-
ous personality scores (28, 29, 31); 5) likely overestimating model
performance (28–30) (see ref. 31, for a discussion of the prob-
lem); 6) not providing enough information to reproduce findings
(e.g., open data and materials, refs. 28–30, 38, and 39); and 7)
not determining the relative effects of variables in the prediction
models (28–30, 38).

To address these issues, we use smartphone sensing to
gather behaviors from a wide variety of behavioral classes
from a large sample, measure personality at both the domain
and facet levels, train linear and nonlinear regression mod-
els (elastic net, random forest), properly evaluate our models
out of sample using a (nested) cross-validated approach, and
explore which behaviors are most predictive of personality over-
all and with respect to the individual personality domains and
facets using interpretable machine learning and corrected sig-
nificance tests. As a benchmark for the performance of our
models, we compare the predictive performance with that of
previous research using digital footprints from social media
platforms (e.g., ref. 1).

Results
Personality Trait Prediction with Behavioral Patterns. Descriptive
statistics can be found in SI Appendix, Tables S1 and S2, and
in extensive detail on the project’s website, accessible via the
project repository (40). The results show that we successfully
predicted levels of Big Five personality traits from behavioral
patterns, derived from smartphone data, for more than half of
the domains and facets (57% of all personality dimensions).
In multiple instances both model types performed well above

the baseline model (i.e., a model that constantly predicts the
mean in the respective training set). Furthermore, our results
suggest differences in how well the trait dimensions were pre-
dicted, as can be seen in Fig. 1 and in SI Appendix, Table S4
(e.g., sociableness most accurately and agreeableness not at all).
The results also show that the nonlinear random forest mod-
els on average outperformed the linear elastic net models in
both prediction performance and the number of successfully
predicted criteria, hinting at the presence of nonlinear cor-
relational structures in the data. Table 1 shows the top five
most-important predictor variables per criterion. In Fig. 2 we
provide a comprehensive visualization of all model results and
effects of the behavioral classes. Fig. 2, Top shows the median
prediction performance in R2, and Fig. 2, Upper Middle shows
the contribution and significance of a behavioral class by itself
for the respective model (unique class importance). Fig. 2,
Lower Middle shows the contribution of a behavioral class in the
context of all other classes (combined class importance). Red
circles indicate significant effects. In Fig. 2, Bottom, color-coded
behavioral patterns ranked by variable importance are displayed
across all models.

Here we report median prediction performances for all
personality trait models, aggregated across the outer cross-
validation folds. We report all metrics for both model types in
SI Appendix, Table S4. In SI Appendix, Fig. S1 we also show
exploratory predictor effects in accumulated local effect plots
(ALEs). Additionally, we provide P values for the behavioral
class effects, in SI Appendix, Table S5. For clarity and due to
the model’s superiority in prediction, we report performance
metrics only for the random forest models in the text. How-
ever, results for both types of models, including plots, vari-
able importance measures, and all exploratory single-predictor
effects, are available on the project’s website, accessible via the
project’s repository (40). In addition to results from predictive
modeling, we also summarize findings from the interpretable
machine-learning analyses. Below we describe which classes of
behavior were significantly predictive for the respective per-
sonality dimension and provide some illustrative examples of
single-variable effects, which should not be generalized beyond
our sample. Finally, by refitting models on all combinations of
the behavioral classes, we evaluate the average effect of each
class for the prediction of personality trait dimensions. Data
and code to reproduce all analyses are available in the project’s
repository (40).

Except for openness to imagination (rmd = 0.19, rsd = 0.13),
openness (rmd = 0.29, rsd = 0.11) and its facets were success-
fully predicted in our dataset. With regard to facets, openness
to aesthetics showed the highest median prediction performance
(rmd = 0.29, rsd = 0.12) and openness to actions (rmd = 0.23,
rsd = 0.11) the lowest, with openness to feelings (rmd = 0.24,
rsd = 0.09) and openness to ideas falling in between (rmd =
0.24, rsd = 0.11). The top predictors in Table 1 and behav-
ioral patterns in Fig. 2 suggest that music consumption also
played a role in the prediction models for openness (e.g., qui-
eter music), but this could not be confirmed by the unique
and combined class-based variable importance scores in Fig. 2.
Those scores suggest that overall patterns in app-usage behav-
ior (e.g., increased camera usage, more photos, less usage of
sports news apps) and for openness to actions communica-
tion and social behavior (e.g., ringing events, calls at night)
were most important for the prediction of openness and its
facets.

Conscientiousness (rmd = 0.31, rsd = 0.13) was also success-
fully predicted above baseline, as were its facets, except for
competence (rmd = 0.19, rsd = 0.11). In terms of prediction per-
formance, the facet love of order ranked first (rmd = 0.31, rsd =
0.13), followed by sense of duty (rmd = 0.29, rsd = 0.10), ambi-
tion (rmd = 0.26, rsd = 0.12), discipline (rmd = 0.22, rsd = 0.12),
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(ES6) Emotional robustness
(ES5) Self control

(ES4) Self consciousness
(ES3) Positive mood

(ES2) Equanimity
(ES1) Carefreeness

(ES) Emotional Stability
(A6) Good naturedness

(A5) Modesty
(A4) Obligingness
(A3) Helpfulness

(A2) Genuineness

(A1) Willingness to trust
(A) Agreeableness
(E6) Cheerfulness

(E5) Adventurousness
(E4) Dynamism

(E3) Assertiveness
(E2) Sociableness
(E1) Friendliness
(E) Extraversion

(C6) Caution
(C5) Discipline
(C4) Ambition

(C3) Sense of duty
(C2) Love of order

(C1) Competence
(C) Conscientiousness

(O6) Openness to value & norm
(O5) Openness to ideas

(O4) Openness to actions
(O3) Openness to feelings

(O2) Openness to aesthetics
(O1) Openness to imagination

(O) Openness

−0.25 0.00 0.25 0.50 −0.50 −0.25 0.00 0.25
Pearson Correlation (r) R²

Algorithm
����� Baseline

Elastic Net

Random Forest

Fig. 1. Box and whisker plot of prediction performance measures from repeated cross-validation for each personality domain and facet. The middle symbol
represents the median, boxes include values between the 25 and 75% quantiles, and whiskers extend to the 2.5 and 97.5% quantiles. Outliers are depicted
by single points. Names of significant models are in boldface type. Figure is available at https://osf.io/kqjhr/, under a CC-BY4.0 license.

and caution (rmd = 0.20, rsd = 0.12). Inspection of behavioral
patterns and class importance indicators in Fig. 2 suggests that in
the context of all other variables, predominantly variables related
to overall phone activity (e.g., earlier first and last phone use per
day), day and nighttime activity (e.g., less variable nightly dura-
tion of inactivity), and most unique app usage (e.g., increased
usage of weather apps, timers, and checkup-monitoring apps)
were especially important for the prediction of higher scores in
the models of conscientiousness and its facets. Additionally, for
the facets love of order and sense of duty, a very specific behav-
ior was found to be important—the mean charge of the phone
when it was disconnected from a charging cable. ALEs in SI
Appendix, Fig. S1 suggest that in the context of all predictors
higher average scores in love of order were predicted for charges
above 60%.

With the exception of the cheerfulness facet (rmd = 0.16, rsd =
0.12), the personality trait of extraversion (rmd = 0.37, rsd = 0.09)
and its facets were successfully predicted above baseline. Most
notably, the facet of sociableness was predicted with the high-
est performance of all criteria (rmd = 0.40, rsd = 0.10). Besides
sociableness, the facets friendliness (rmd = 0.24, rsd = 0.09),
assertiveness (rmd = 0.29, rsd = 0.11), dynamism (rmd = 0.29,
rsd = 0.10), and adventurousness (rmd = 0.29, rsd = 0.11) were
predicted above baseline. Behavioral patterns and class impor-
tance (unique and combined) in Fig. 2 suggest that variables
related to communication and social behavior (e.g., higher mean
number of outgoing calls per day, higher irregularity of all calls,

higher mean number of WhatsApp uses per day) were important
in the prediction of higher scores in the models of extraversion
and its facets.

In the present analyses, the personality dimension of agree-
ableness could not be successfully predicted from the data, either
on domain or on facet levels (rmd = 0.05, rsd = 0.11).

For the personality dimension of emotional stability, only
the facets of carefreeness (rmd = 0.22, rsd = 0.10) and self-
consciousness (rmd = 0.32, rsd = 0.09) were predicted signif-
icantly. Behavioral patterns in Fig. 2 are rather distinct for
the individual facets of emotional stability. Whereas commu-
nication and social behavior were significantly predictive for
the facet self-consciousness (e.g., higher number of calls), the
model of carefreeness did not show any significant effects at
the class level.

In summary, all behavioral classes had some impact on the
prediction of personality trait scores (as seen in Fig. 2). How-
ever, behaviors related to communication and social behavior
and app usage showed as most significant in the models. This
pattern can be discerned in Fig. 2. To estimate the average
effect of each behavioral class on the prediction of personality
trait dimensions overall (successfully and unsuccessfully pre-
dicted in the main analyses), we used a linear mixed model
(details of the analysis are described in Materials and Methods).
Results of the model show that communication and social behav-
ior had the biggest impact on model performance on domain
(β = 0.027, CI95% = [.026, .028]) and facet levels (β = 0.019,

17682 | www.pnas.org/cgi/doi/10.1073/pnas.1920484117 Stachl et al.
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Table 1. Top five predictors per prediction model

Personality dimension Top five predictors

O, openness Daily mean length text messages | robust mean dur sports news apps | daily robust variation dur phone ringing |
daily robust mean no. photos | robust mean dur sports news apps night

O2, openness to aesthetics Robust mean dur sports news apps | daily mean no. photos | daily mean no. unique sports news apps | robust mean
dur nightly sports news app | daily mean no. sports news apps

O3, openness to feelings Excess music acousticness | daily mean no. unique sports news apps per week | robust variation dur shared
transportation apps | daily robust variation in dur phone ringing | daily mean no. unique sports news apps

O4, openness to actions Mean no. of phone ringing night | daily mean no. of ringing events | daily mean no. Google Maps | mean no. calls
night | irregularity of phone ringing

O5, openness to ideas Loudness fourth most listened song | robust mean dur sports news apps | daily SD no. of photos | robust mean dur
Süddeutsche Zeitung (newspaper) | robust mean dur Samsung Notes

O6, openness to value Daily mean no. unique sports news week | daily mean no. Facebook | daily mean no. sports news | daily mean no.
and norm unique sports news weekend | daily mean no. Kicker (soccer news)

C, conscientiousness Robust mean dur weather app night | daily SD sum interevent time | robust mean time last event | robust variation
dur checkup monitoring apps | robust variation first event weekdays

C2, love of order Daily SD sum interevent time | robust mean dur news-magazine apps | daily mean no. unique email apps | mean
mean charge disconnection | robust variation dur TV-filmguide apps

C3, sense of duty SD dur nightly downtime | robust mean time first event weekdays | robust variation time last event weekdays |
robust mean dur Stadtwerke München Fahrinfo München (public transportation)

C4, ambition Robust mean time first event | robust variation first event weekdays | robust mean time last event | robust variation
time first event weekends | daily mean no. Google Playstore

C5, discipline Robust variation time first event weekdays | robust mean time first event weekdays | robust mean dur weather
apps night | robust variation time first event weekends | daily SD sum interevent time

C6, caution Robust variation time last event weekdays | SD dur nightly downtime Sunday til Thursday | similarity contacts
phone and messaging | robust variation time last event | mean music valence weekends

E, extraversion Nightly mean no. phone ringing | nightly mean no. calls | daily mean no. outgoing calls | daily mean no.
phone ringing | nightly mean no. outgoing calls

E1, friendliness Daily mean no. phone ringing | irregularity of phone ringing weekend | daily SD no. incoming calls | daily robust
variation sum dur phone ringing | daily SD sum dur incoming calls

E2, sociableness Mean no. calls night | daily mean no. outgoing calls | mean no. phone ringing night | mean no. outgoing calls
night | irregularity of phone ringing weekend

E3, assertiveness Daily mean no. outgoing calls | daily mean no. contacts per week | daily mean no. contacts outgoing calls | daily
mean no. contacts calls | mean no. calls night

E4, dynamism Daily mean no. outgoing calls | mean no. phone ringing night | daily mean no. contacts outgoing calls | mean no.
calls night | daily mean no. phone ringing

E5, adventurousness Mean no. phone ringing night | mean no. calls night | irregularity of phone ringing | mean no. outgoing calls
night | irregularity of calls

ES1, carefreeness Daily mean no. Android-Email (app) | daily mean no. screen unlocks | robust variation dur system apps | robust
variation dur strategy games | daily mean no. phone ringing

ES4, self-consciousness Nightly mean no. calls | daily mean no. phone ringing | daily mean no. contacts calls | daily mean no. outgoing
calls | daily mean no. contacts incoming calls

The top five most predictive features are shown for each successfully predicted personality dimension in the random forest models. The ranking is based
on permutation feature importance and goes from left (high) to right (low). dur = duration.

CI95% = [.019, .020]). App usage was second (βdomains = 0.014,
CI95% = [.013, .015], βfacets = 0.014, CI95% = [.014, .015]) fol-
lowed by day and nighttime activity (βdomains = 0.013, CI95% =
[.012, .014], βfacets = 0.011, CI95% = [.011, .012]), overall phone
activity (βdomains = 0.006, CI95% = [.005, .007], βfacets = 0.004,
CI95% = [.004, .005]), and music (βdomains = 0.001, CI95% =
[.000, .002], βfacets = 0.001, CI95% = [.001, .002]). The behavioral
class of mobility was least important for the prediction of Big
Five personality trait dimensions (βdomains = −0.001, CI95% =
[−.002,−.001], βfacets = −0.001, CI95% = [−.001, .000]). In SI
Appendix, Fig. S2, we provide additional, exploratory results of a
resampled greedy forward search analysis, indicating which com-
binations of behavioral classes were most predictive overall, in
our dataset.

Discussion
The results presented here demonstrate that information about
individuals’ everyday behaviors detected from smartphone sen-
sors and logs can be used to infer their Big Five personality trait
dimensions. Specific classes of behavior (app usage, music con-

sumption, communication and social behavior, mobility behav-
ior, overall phone activity, daytime vs. nighttime activity) were
distinctively informative about the different Big Five trait dimen-
sions. Our models were able to predict personality on the broad
domain level and the narrow facet level for openness, con-
scientiousness, and extraversion. For emotional stability, only
single facets could be predicted above baseline. Finally, scores
for agreeableness could not be predicted at all. The behavioral
class of communication and social behavior was most impor-
tant for the prediction of personality trait dimensions on aver-
age, but app usage and day and nighttime activity were also
important*. We found performance levels across all significant
models (rrange = [0.20, 0.40]) to be on average similar to those
identified in a metaanalysis of previous studies predicting per-
sonality from digital footprints, which reported a mean effect size
of r = 0.34 (1). As benchmarks for gauging these effect sizes,

*As can be seen in Fig. 2, in roughly half of the models the behavioral class commu-
nication and social was most important and, for the other half, app usage was most
important.
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Fig. 2. (Top) Median prediction performance in R2. (Upper Middle) Rela-
tive remaining performance when keeping variables of the respective class
intact and permuting variables of other classes (unique class importance).
(Lower Middle) Relative drop in performance when permuting variables
of respective groups (combined class importance). Red circles indicate
significant effects tested with the PIMP algorithm (41). (Bottom) Behav-
ioral patterns of ranked permutation-based variable importance, color
coded by class of behavior. Black frames indicate additional day–night
dependency. Figure is available at https://osf.io/kqjhr/, under a CC-BY4.0
license.

consider that the highest median effect size (rmd = 0.40) is com-
parable to the tendency of people in a bad mood to be more
aggressive than people in a good mood, and the smallest signif-
icant effect size is equal to the average reported effect size in
personality psychology (42). These performance levels highlight
the practical relevance of our results beyond significance.

The results here point to the breadth of behavior that can
easily be obtained from the sensors and logs of smartphones
and, more importantly, the breadth and specificity of personal-
ity predictions that can be made from the behavioral data so
obtained. However, it is important to note that these findings
are, if anything, a conservative estimate of what can be learned
about people’s personalities using information obtainable from
their smartphones. Greater prediction accuracies would almost
certainly be obtained when using more sensors (e.g., accelerom-
eters, microphones, cameras; ref. 11); more log data (e.g., over
longer time periods); content-level data (e.g., the content of
texts, calls, emails, photos, videos, or all visible information on
the screen; ref. 43); bigger, more diverse, and more represen-
tative samples (e.g., iPhone operating system [iOS] and Android
users, nonwestern, educated, industrialized, rich, and democratic
[WEIRD] samples; ref. 44); and by combining these data with
other information about the user, derived from other sources
(e.g., purchase histories, digital footprints from social media).
Furthermore, models in this paper are still limited by the spar-
sity in the data (e.g., app usage), because some apps were used
by only very few participants. Larger samples (e.g., as used in
studies on personality social media use; ref. 6) could also allow
for more accurate predictions.

As such, the present work serves as a harbinger of both the
benefits and the dangers presented by the widespread use of
behavioral data obtained from smartphones. On the positive
side, obtaining behavior-based estimates of personality stands to
open additional avenues of research on the causes and conse-
quences of personality traits, as well as permitting consequential
decisions (e.g., in personnel selection) to draw on behavioral
data rather than estimates derived from self-report question-
naires, which are subject to a range of biases (e.g., responses
biases, social desirability, different reference standards, memory
limitations; refs. 45 and 46).

At the same time, we should not underestimate the potential
negative consequences of the routine collection, modeling, and
uncontrolled trade of personal smartphone data (20, 21, 47). For
example, organizations and companies can obtain information
about individuals’ private traits (e.g., the Big Five personality
traits), without the personality information ever being deliber-
ately provided or explicitly requested (48). Mounting evidence
suggests that these data can and are being used for psychologi-
cal targeting to influence people’s actions, including purchasing
decisions (5, 47) and potentially voting behaviors, which are
related to personality traits (49, 50).

Many commercial actors already collect a subset of the behav-
ioral data that we have used in this work using publicly avail-
able applications (20). In academic settings, such data collec-
tion requires institutional review board (IRB) approval of the
research study. However, current data protection laws in many
nations do not adequately regulate data collection practices in
the private sector. For example, in online real-time bidding on
advertisements multiple actors exchange cross-device data to win
bids to cater personalized ads to single users; this process is
complex, happens within milliseconds, and is poorly understood
outside of the industry (47). In such cases, once the data are col-
lected from people’s smartphones, the data’s distribution seems
to largely escape legislative oversight and legal enforcement (21,
47). This is the case even though legal frameworks against the
routine collection of these data exist (e.g., the General Data
Protection Regulation [GDPR] in the European Union; ref. 51)
and reflects the growing asymmetry between one-click privacy
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permissions and the untraceable ways behavioral data from
peoples’ phones can wander.

Hence, a more differentiated choice with regard to the types
of data and their intended usage should be given to users. For
example, users should be made aware that behavioral data from
phones are required for the completion of a specific task (e.g.,
finding a café); could be reused or sold to third parties, com-
bined with other data; or used to create user models to make
indirect predictions (e.g., personality, financial, credit scoring).
In other words, it must be more obvious to consumers whether
they are consenting to the measurement of their app use or to
the automatic prediction of their private traits (e.g., personality).

Under most legislation, all of these actions are currently pos-
sible after initially providing the permission to access data on
phones. One idea is for user data to have an automatic expiration
date, after which data attributable to a unique identity must be
deleted. Finally, the manifold techniques that online marketing
companies use to link datasets of individuals to facilitate person-
alized ads (i.e., unique identifiers; ref. 47) could also be used
to opt out of all advertisements and data-processing activities.
Some variations of these suggestions are already implemented in
the European Union’s GDPR (51). We hope our findings stim-
ulate further debate on the sensitivity of behavioral data from
smartphones and how privacy rights can be protected at the
individual (15) and aggregate levels (52).

A large portion of current economic and scientific progress
depends on the availability of data about individuals’ behaviors.
The smartphone represents an ideal instrument to gather such
information. Therefore, our results should not be taken as a
blanket argument against the collection and use of behavioral
data from phones. Instead, the present work points to the need
for increased research at the intersection of machine learning,
human computer interaction, and psychology that should inform
policy makers. We believe that to understand complex social
systems, while at the same time protecting the privacy of smart-
phone users, more sophisticated technical and methodological
approaches combined with more dynamic and more transpar-
ent approaches to informed consent will be necessary (e.g.,
distributed privacy, federated learning, privacy nudges; refs. 53–
56). These approaches could help balance the tradeoff between
the collection of behavioral smartphone data and the protec-
tion of individual privacy rights, resulting in higher standards for
consumers and industry alike.

Materials and Methods
Participants and Dataset. The dataset was collected in three separate studies
as part of the PhoneStudy mobile sensing research project at the Ludwig-
Maximilians-Universität München (LMU) (57). Parts of the data have been
used in other publications (32, 33, 58, 59), but the joint dataset of common
parameters has not been analyzed before. A total of 743 volunteers were
recruited via forums, social media, blackboards, flyers, and direct recruit-
ment, between September 2014 and January 2018 (33, 58, 59). All subjects
participated willingly and provided informed consent prior to their par-
ticipation in the study. Volunteers could withdraw from participation and
demand the deletion of their data as long as their reidentification was
possible. Dependent on the respective study (33, 58, 59), we provided dif-
ferent rewards for participation. Procedures for all studies were approved
by the IRB of the Psychology Department at Ludwig-Maximilians-Universität
München and have been conducted according to European Union laws. In
SI Appendix, Table S3 we provide an overview of the datasets. We excluded
data from volunteers with less than 15 d of logging data (29), no app usage
(39), and missing questionnaire data (52). The final sample (n = 624) was
skewed in favor of more educated (91% completed A levels, 20% had a uni-
versity degree), younger participants (M = 23.56, SD = 6.63) and was not
equally balanced with regard to gender (377 women, 243 men, and 4 with
undisclosed gender).

Procedures. Study procedures were somewhat different across the three
studies (33, 58, 59). However, in all three studies, Big Five personality trait
levels were measured with the German version of the Big Five Structure

Inventory (BFSI) (60) and naturalistic smartphone usage in the field was
automatically recorded over a period of 30 d. The data were regularly trans-
ferred to our encrypted server using Secure Sockets Layer (SSL) encryption,
when phones were connected to WiFi. In study 2, volunteers had to answer
experience sampling questionnaires during the data collection period on
their smartphones (59). Volunteers in studies 2 and 3 completed the demo-
graphic and BFSI personality questionnaires via smartphone at a convenient
time (58). In cases where volunteers turned off location services, they were
reminded to reactivate them. At the end of mobile data collection, volun-
teers were instructed to contact the research staff to receive compensation
(studies 1 to 3) and to schedule a final laboratory session (study 2). More
details about the procedures of the individual studies are available in the
respective research articles (33, 58, 59).

Self-Reported Personality Measures and Demographics. Big Five personality
dimensions were assessed with the German version of the BFSI (60). The
test consists of 300 items and measures the Big Five personality dimensions
(openness to experience, conscientiousness, extraversion, agreeableness,
and emotional stability) on five domains and 30 facets. Participants indi-
cated their agreement with items using a four-point Likert scale ranging
from untypical for me to typical for me.

Additionally, we collected age, gender, highest completed education, and
a number of other questionnaires that were used in other research projects.
More information can be found in the respective online repositories and
articles (33, 58, 59). Questionnaires were administered either via desktop
computer (studies 1 and 2) or via smartphone (studies 2 and 3). We used
the laboratory version scores from study 2 in this study. Descriptive statistics
including confidence intervals of internal consistencies (α) are provided in
SI Appendix, Table S1.

Behavioral Data from Smartphone Sensing. We used the PhoneStudy smart-
phone research app for Android to collect behavioral data from the
volunteers’ privately owned smartphones. This app has been continuously
developed at the Ludwig-Maximilians-Universität München since September
2013.

Initially, activities were recorded in the form of time-stamped logs of
events. Those events included calls, contact entries, texting, global posi-
tioning system (GPS) locations, app starts/installations, screen de/activations,
flight mode de/activations, Bluetooth connections, booting events, played
music, battery charging status, photo and video events, and connections
to wireless networks (WiFi). Additionally, the character length of text
messages and technical device characteristics were collected. Irreversibly
hash-encoded versions of contacts and phone numbers were collected
to enable us to measure the number of distinct contacts while pre-
venting the possibility of reidentification. Information such as names,
phone numbers, and contents of messages, calls, etc., was not recorded
at any time.

Data Analysis. The final dataset consisted of 1,821 behavioral predictors and
35 personality criteria (five domains and 30 facets). Gender, age, and edu-
cation were used solely for descriptive statistics and were not included as
predictors in the models.
Variable extraction. In a first step, we extracted 15,692 variables from the
raw dataset. The extracted variables roughly correspond to the aforemen-
tioned behavioral classes of app usage, music consumption, communication
and social behavior, mobility, overall phone activity, and day- and night-
time dependency. Variables with regard to day and night dependency were
not computed for music consumption behaviors. Besides common estimators
(e.g., arithmetic mean, SD sum, etc.), we computed more complex variables
containing information about the irregularity, the entropy, the similarity,
and the temporal correlation of behaviors. These variables provided infor-
mation about specific data types (e.g., mobility data) and were used for
the quantification of behavioral structures within person and across time
while avoiding more complex time-series models. The large amounts of data
meant it was unfeasible to check for outliers manually, so we used robust
estimators (e.g., Huber M Estimator; ref. 61) for most variables (except for
call and messaging variables that were checked manually). Details about the
calculation of variables and the full set of extracted variables and a detailed
overview of all sensed data are provided in the project repository (40).
Machine learning. We fitted machine-learning models with an inner cross-
validation loop (5-fold cross-validation [CV]) for preprocessing and hyper-
parameter tuning and an outer cross-validation loop (10× 10-fold CV) for
unbiased model evaluation. We compared the predictive performance of
elastic net regularized linear regression models (62) with those of nonlinear
tree-based random forest models (63) and a baseline model. The baseline
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model predicted the mean of the respective training set for all cases in a
test set. We chose these standard models due to their ability to cope with
P>>N problems (i.e., few cases, many predictors). Furthermore, the usage
of random forest models allowed us to include nonlinear predictor effects
and high-dimensional interactions in the models.

We evaluated the predictive performance of the models based on the
Pearson correlation (r) and the coefficient of determination (R2). Specifically,
we compared the predicted values from our models with the latent person-
parameter trait estimates from the self-reported values of the personality
trait measures. Because the personality scores in our analyses already rep-
resent latent trait scores, correlation measures were not adjusted for the
reliability of the personality trait scales (all attenuated). Thus, the abso-
lute size of the correlations is limited by the reliability of the personality
trait measures. Disattenuated correlation coefficients are provided in SI
Appendix, Table S5. We computed performance measures within each fold
of the cross-validation procedure and averaged across all outer resampling
folds within a single prediction model (e.g., for extraversion). To determine
whether a model was predictive at all, we carried out t tests by compar-
ing the R2 measures of the random forest model with those of the baseline
model. The t tests were based on 10-times repeated 10-fold cross-validation
and used a variance correction to specifically address the dependence struc-
ture of cross-validation experiments (64). All comparisons were adjusted for
multiple comparisons (n = 35) via Holm correction. Significant prediction
models (α= 0.05) are marked in boldface type in Fig. 1.

In addition to measures of predictive performance, we used interpretable
machine-learning techniques with significant models to gain insights into
our models’ inner workings. Specifically, we used permutation strategies to
determine the unique contribution of the respective behavioral class and
the importance of a class within the context of all other classes. These
effects were also tested for significance (41) and adjusted for multiple
comparisons.

To determine which of the behavioral classes was the most important
overall for the prediction of Big Five personality traits, we performed an
additional resampling analysis: 1) We created predictor sets with all possible
combinations of subsets of the six behavioral classes (26 = 64); 2) we created
100 resampling folds of the complete dataset (10-times repeated 10-fold
cross-validation; train and test data splits remained the same across all com-
binations); 3) for each of these combinations in all folds (64× 100 = 6,400),
we fitted (on training data) and evaluated (on test data) models to predict
each personality criterion (30 facets or 5 domains = 30 or 5 R2 coefficients);

4) we averaged R2 across all personality criteria, within each fold of a com-
bination (100 mean R2 values); and 5) we used two maximum-likelihood
linear mixed models (domains vs. facets) with the mean R2 as the outcome
variable, the resampling iteration as the random factor (fold 1 to 100), and
the behavioral classes (dummy encoded) as fixed factors. This procedure
allowed us to determine the effects of each behavioral class on the aver-
age prediction performance across all personality trait dimensions. P values
in the linear mixed models were adjusted for multiple testing with the Holm
method. All procedures were performed on domain and facet levels, sepa-
rately. Further details about preprocessing, the modeling procedures, and
the performance metrics are available in SI Appendix and in the project’s
repository (40).
Software. Due to the high computational load of the machine-learning
analyses, we parallelized the computations on the Linux Cluster of the
LRZ-Supercomputing Center, in Garching, near Munich, Germany. For com-
putations on the cluster, R-version 3.5.0 was used (65). We used R 3.5.2 for
all other analyses (65). We used the fxtract package (66) for variable extrac-
tion from the raw data. Furthermore, we used the mlrCPO (67) and caret
(68) packages for preprocessing. For machine learning we used the mlr (69),
glmnet (70), iml (71), and ranger (72) packages.
Open data and materials and additional resources. We provide the dataset
and the code for variable extraction, preprocessing, and modeling in the
project’s repository (40). Raw data files cannot be provided (due to unsolved
privacy implications); full reproducibility is possible for the analyses but not
for preprocessing and variable extraction. In the repository, we link to the
interactive project website where readers can find an exhaustive data dic-
tionary, additional methodological descriptions, references, and results for
all models in much greater detail. This paper is based on a preprint (73).
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